3.9.3 \(\int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx\) [803]

3.9.3.1 Optimal result
3.9.3.2 Mathematica [A] (verified)
3.9.3.3 Rubi [A] (verified)
3.9.3.4 Maple [A] (verified)
3.9.3.5 Fricas [C] (verification not implemented)
3.9.3.6 Sympy [F]
3.9.3.7 Maxima [F]
3.9.3.8 Giac [F]
3.9.3.9 Mupad [F(-1)]

3.9.3.1 Optimal result

Integrand size = 31, antiderivative size = 105 \[ \int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=-\frac {2 A \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{d \sqrt {b \cos (c+d x)}} \]

output
2*A*b*sin(d*x+c)/d/(b*cos(d*x+c))^(1/2)+2*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2) 
/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2) 
/d/(b*cos(d*x+c))^(1/2)-2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c 
)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^ 
(1/2)
 
3.9.3.2 Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.70 \[ \int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {2 \sqrt {b \cos (c+d x)} \left (-A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {A \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{d \sqrt {\cos (c+d x)}} \]

input
Integrate[Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]
 
output
(2*Sqrt[b*Cos[c + d*x]]*(-(A*EllipticE[(c + d*x)/2, 2]) + B*EllipticF[(c + 
 d*x)/2, 2] + (A*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/(d*Sqrt[Cos[c + d*x]])
 
3.9.3.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.11, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 2030, 3227, 3042, 3116, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^2 \int \frac {A+B \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle b^2 \left (A \int \frac {1}{(b \cos (c+d x))^{3/2}}dx+\frac {B \int \frac {1}{\sqrt {b \cos (c+d x)}}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (A \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx+\frac {B \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle b^2 \left (A \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \cos (c+d x)}dx}{b^2}\right )+\frac {B \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (A \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\right )+\frac {B \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^2 \left (A \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)}}\right )+\frac {B \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b \sqrt {b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (A \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)}}\right )+\frac {B \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b \sqrt {b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^2 \left (\frac {B \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b \sqrt {b \cos (c+d x)}}+A \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b^2 \left (A \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d \sqrt {b \cos (c+d x)}}\right )\)

input
Int[Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]
 
output
b^2*((2*B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(b*d*Sqrt[b*Cos[c 
+ d*x]]) + A*((-2*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*S 
qrt[Cos[c + d*x]]) + (2*Sin[c + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])))
 

3.9.3.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
3.9.3.4 Maple [A] (verified)

Time = 5.15 (sec) , antiderivative size = 215, normalized size of antiderivative = 2.05

method result size
default \(\frac {2 b \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(215\)
parts \(-\frac {2 A b \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(340\)

input
int((cos(d*x+c)*b)^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x,method=_RETURNVER 
BOSE)
 
output
2*b*(-2*sin(1/2*d*x+1/2*c)^4*b+b*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*cos(1/2* 
d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2* 
d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/ 
2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/si 
n(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 
3.9.3.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.62 \[ \int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {-i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} A \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} A \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} A \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \]

input
integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm= 
"fricas")
 
output
(-I*sqrt(2)*B*sqrt(b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) + I*sqrt(2)*B*sqrt(b)*cos(d*x + c)*weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*A*sqrt(b)*cos(d*x + c)*w 
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c))) + I*sqrt(2)*A*sqrt(b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstra 
ssPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*sqrt(b*cos(d*x + c)) 
*A*sin(d*x + c))/(d*cos(d*x + c))
 
3.9.3.6 Sympy [F]

\[ \int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int \sqrt {b \cos {\left (c + d x \right )}} \left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate((b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)**2,x)
 
output
Integral(sqrt(b*cos(c + d*x))*(A + B*cos(c + d*x))*sec(c + d*x)**2, x)
 
3.9.3.7 Maxima [F]

\[ \int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm= 
"maxima")
 
output
integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sec(d*x + c)^2, x)
 
3.9.3.8 Giac [F]

\[ \int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{2} \,d x } \]

input
integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorithm= 
"giac")
 
output
integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sec(d*x + c)^2, x)
 
3.9.3.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int \frac {\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^2} \,d x \]

input
int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^2,x)
 
output
int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^2, x)